The number of solutions, of the equation $\mathrm{e}^{\sin x}-2 e^{-\sin x}=2$ is
$2$
more than $2$
$1$
$0$
Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$
Complete solution set of the inequality $\left( {{{\sec }^{ - 1}}\,x - 4} \right)\left( {{{\sec }^{ 1}}\,x - 1} \right)\left( {{{\sec }^{ - 1}}\,x - 2} \right) \ge 0$ is
The equation $x^2-4 x+[x]+3=x[x]$, where $[x]$ denotes the greatest integer function, has: