7.Binomial Theorem
normal

જો $\sum\limits_{K = 1}^{12} {12K{.^{12}}{C_K}{.^{11}}{C_{K - 1}}} $ ની કિમત $\frac{{12 \times 21 \times 19 \times 17 \times ........ \times 3}}{{11!}} \times {2^{12}} \times p$ હોય તો $p$ ની કિમત મેળવો 

A

$2$

B

$4$

C

$8$

D

$6$

Solution

$ = 12k \cdot \frac{{{{12}^{11}}}}{k}{C_{k – 1}}{\,^{11}}{C_{k – 1}}$

$\sum\limits_{K = 1}^n {12.K} {\,^{12}}{C_K}.{\,^{11}}{C_{K – 1}} = {12^2}\sum\limits_{K = 1}^{12} {{{\left( {^{11}{C_{K – 1}}} \right)}^2}} $

$=12^{2} \cdot \frac{22 !}{11 ! 11 !}$

$=12 \cdot \frac{21.19 .17 \ldots .3}{11 !} 2^{12} .6 \Rightarrow p=6$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.