જો $\sum\limits_{K = 1}^{12} {12K{.^{12}}{C_K}{.^{11}}{C_{K - 1}}} $ ની કિમત $\frac{{12 \times 21 \times 19 \times 17 \times ........ \times 3}}{{11!}} \times {2^{12}} \times p$ હોય તો $p$ ની કિમત મેળવો 

  • A

    $2$

  • B

    $4$

  • C

    $8$

  • D

    $6$

Similar Questions

જો $a$ અને $d$ બે સંકર સંખ્યા હોય તો શ્રેણી $a{C_0} - (a + d){C_1} + (a + 2d){C_2} - ........$ ના $(n + 1)$ પદનો સરવાળો મેળવો.

જો $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$,  જ્યાં $C_r ={}^m{C_r}$ અને $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$,  હોય તો નીચેનામાંથી ક્યુ ખોટું છે ?

જો ${\left( {1 + x + {x^2}} \right)^{20}}\left( {2x + 1} \right) = {a_0} + {a_1}{x^1} + {a_2}{x^2} + ... + {a_{41}}{x^{41}}$ , હોય તો $\frac{{{a_0}}}{1} + \frac{{{a_1}}}{2} + .... + \frac{{{a_{41}}}}{{42}}$ ની કિમત મેળવો 

$(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$  ના વિસ્તરણમાં $x^{64}$ નો સહગુણક મેળવો 

પ્રાકૃતિક સંખ્યા $m,n$ માટે, ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$માટે $a_1= a_2=10,$ તો $(m,n)$ =______. 

  • [AIEEE 2006]