If ${\left( {1 + x} \right)^n} = {c_0} + {c_1}x + {c_2}{x^2} + {c_3}{x^3} + ...... + {c_n}{x^n}$ , then the value of ${c_0} - 3{c_1} + 5{c_2} - ........ + {( - 1)^n}\,(2n + 1){c_n}$ is
$\left( {n - 1} \right){.2^n}$
$0$
$\left( {1 - 2n} \right){.2^{n - 1}}$
$\left( {1 - n} \right){.2^n}$
$^n{C_0} - \frac{1}{2}{\,^n}{C_1} + \frac{1}{3}{\,^n}{C_2} - ...... + {( - 1)^n}\frac{{^n{C_n}}}{{n + 1}} = $
The sum of the series $\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$
The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is
In the expansion of
$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-
If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals