Let $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ Then $\frac{ a _{7}}{ a _{13}}$ is equal to
$4$
$32$
$16$
$8$
If $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$, then $\alpha$ is equal to
If number of terms in the expansion of ${(x - 2y + 3z)^n}$ are $45$, then $n=$
If n is a positive integer and ${C_k} = {\,^n}{C_k}$, then the value of ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =
Total number of terms in the expansion of $\left[ {{{\left( {1 + x} \right)}^{100}} + {{\left( {1 + {x^2}} \right)}^{100}}{{\left( {1 + {x^3}} \right)}^{100}}} \right]$ is
Suppose $\sum \limits_{ r =0}^{2023} r ^{20023} C _{ r }=2023 \times \alpha \times 2^{2022}$. Then the value of $\alpha$ is $............$