If the sum of the coefficients in the expansion of ${(\alpha {x^2} - 2x + 1)^{35}}$ is equal to the sum of the coefficients in the expansion of ${(x - \alpha y)^{35}}$, then $\alpha $=
$0$
$1$
May be any real number
No such value exist
The value $\sum \limits_{ r =0}^{22}{ }^{22} C _{ r }{ }^{23} C _{ r }$ is $.......$
Let $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ Then $\frac{ a _{7}}{ a _{13}}$ is equal to
The coefficient of $x^8$ in the expansion of $(x-1) (x- 2) (x-3)...............(x-10)$ is :
The value of ${\sum\limits_{r = 1}^{19} {\frac{{{}^{20}{C_{r + 1}}\left( { - 1} \right)}}{{{2^{2r + 1}}}}} ^r}$ is
The value of $\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ is $.............$.