The sum of the series $\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ 

  • [AIEEE 2007]
  • A

    $0$

  • B

    $\;\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$

  • C

    -$\;\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$

  • D

    $\frac{1}{2}\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$

Similar Questions

The sum of all the coefficients in the binomial expansion of ${({x^2} + x - 3)^{319}}$ is

$^{10}{C_1}{ + ^{10}}{C_3}{ + ^{10}}{C_5}{ + ^{10}}{C_7}{ + ^{10}}{C_9} = $

Sum of odd terms is $A$ and sum of even terms is $B$ in the expansion ${(x + a)^n},$ then

The expression $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - a)^2 (x - b)$ if the values of $c$ is

Let $C _{ r }$ denote the binomial coefficient of $x ^{ r }$ in the expansion of $(1+x)^{10}$. If $\alpha, \beta \in R$. $C _{1}+3 \cdot 2 C _{2}+5 \cdot 3 C _{3}+\ldots$ upto $10$ terms $=\frac{\alpha \times 2^{11}}{2^{\beta}-1}\left( C _{0}+\frac{ C _{1}}{2}+\frac{ C _{2}}{3}+\ldots . .\right.$ upto 10 terms $)$ then the value of $\alpha+\beta$ is equal to

  • [JEE MAIN 2022]