The sum of the series $\left( {\begin{array}{*{20}{c}}{20}\\0\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\1\end{array}} \right)$$+$$\left( {\begin{array}{*{20}{c}}{20}\\2\end{array}} \right) - \left( {\begin{array}{*{20}{c}}{20}\\3\end{array}} \right)$$+…..-……+$$\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$ 

  • [AIEEE 2007]
  • A

    $0$

  • B

    $\;\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$

  • C

    -$\;\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$

  • D

    $\frac{1}{2}\left( {\begin{array}{*{20}{c}}{20}\\{10}\end{array}} \right)$

Similar Questions

The coefficient of $x^{4}$ in the expansion of $\left(1+x+x^{2}+x^{3}\right)^{6}$ in powers of $x,$ is

  • [JEE MAIN 2020]

The sum to $(n + 1)$ terms of the series $\frac{{{C_0}}}{2} - \frac{{{C_1}}}{3} + \frac{{{C_2}}}{4} - \frac{{{C_3}}}{5} + ...$ is 

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$ = . . . 

Let n and k be positive integers such that $n \ge \frac{{k(k + 1)}}{2}$. The number of solutions $({x_1},{x_2},....{x_k})$, ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ all integers, satisfying ${x_1} + {x_2} + .... + {x_k} = n$, is

  • [IIT 1996]

If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals

  • [JEE MAIN 2024]