- Home
- Standard 11
- Mathematics
જો $\alpha ,\,\beta ,\,\gamma ,\,\delta $ એ ચડતા ક્રમમા છે જેના sine કિમત ધન સંખ્યા $k$ જેટલી હોય તો $4\sin \frac{\alpha }{2} + 3\sin \frac{\beta }{2} + 2\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ ની કિમત મેળવો.
$2\sqrt {\left( {1 - k} \right)} $
$\frac{1}{2}\sqrt {\left( {1 + k} \right)} $
$2\sqrt {\left( {1 + k} \right)} $
એક પણ નહી
Solution
Given that, $\alpha<\beta<\gamma<\delta$ and
$\sin \alpha=\sin \beta=\sin \gamma=\sin \delta=\mathrm{k}$
Also $\alpha, \beta, \gamma, \delta$ are smallest positive angles, satisfying above two conditions.
$\therefore $ we can take $\beta=\pi-\alpha, \gamma=2 \pi+\alpha, \delta=3 \pi-\alpha$
The given expression
$=4 \sin \frac{\alpha}{2}+3 \sin \left(\frac{\pi}{2}-\frac{\alpha}{2}\right)$
$+2 \sin \left(\pi+\frac{\alpha}{2}\right)+\sin \left(\frac{3 \pi}{2}-\frac{\alpha}{2}\right)$
$=4 \sin \frac{\alpha}{2}+3 \cos \frac{\alpha}{2}-2 \sin \frac{\alpha}{2}-\cos \frac{\alpha}{2}$
$=2\left(\sin \frac{\alpha}{2}+\cos \frac{\alpha}{2}\right)$
$ = 2\sqrt {\left\{ {{{\left( {\sin \frac{\alpha }{2} + \cos \frac{a}{2}} \right)}^2}} \right\}} $
$=2 \sqrt{(1+\sin \alpha)}=2 \sqrt{(1+\mathrm{k})}$