Trigonometrical Equations
easy

જો $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

A

$2n\pi \pm \frac{\pi }{6}$

B

$n\pi \pm \frac{\pi }{6}$

C

$2n\pi \pm \frac{\pi }{3}$

D

$n\pi \pm \frac{\pi }{3}$

Solution

(d) $\frac{{1 – \cos 2\theta }}{{1 + \cos 2\theta }} = 3$

==> $\frac{{1 – (1 – 2{{\sin }^2}\theta )}}{{1 + (2{{\cos }^2}\theta – 1)}} = 3$

$ \Rightarrow $ ${\tan ^2}\theta = 3$

$ \Rightarrow $ $\theta = n\pi \pm \frac{\pi }{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.