જો $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

  • A

    $2n\pi \pm \frac{\pi }{6}$

  • B

    $n\pi \pm \frac{\pi }{6}$

  • C

    $2n\pi \pm \frac{\pi }{3}$

  • D

    $n\pi \pm \frac{\pi }{3}$

Similar Questions

સમીકરણ $\sqrt[3]{{\sin \theta  - 1}} + \sqrt[3]{{\sin \theta }} + \sqrt[3]{{\sin \theta  + 1}} = 0$ ના $[0,4\pi]$ માં ઉકેલોની સંખ્યા મેળવો. 

સમીકરણ $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ..... + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + .... + \cos {{44}^o}) + 1}}$ ની કિમત મેળવો 

અહી $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$ હોય તો  . . . 

  • [KVPY 2019]

વિધાન $-1:$ ત્રિકોણમિતીય સમીકરણો $2\,sin^2\,\theta - cos\,2\theta  = 0$ અને $2 \,cos^2\,\theta - 3\,sin\,\theta  = 0$ ના અંતરાલ $[0, 2\pi ]$ માં બે સામાન્ય ઉકેલો મળે છે.

વિધાન $-2:$ સમીકરણ $2\,cos^2\,\theta  - 3\,sin\,\theta  = 0$ ના અંતરાલ $[0, \pi ]$ માં 2 ઉકેલો મળે

  • [JEE MAIN 2013]

સમીકરણ

$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.

  • [IIT 1988]