If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-

  • A

    $4/9$

  • B

    $9/4$

  • C

    $3/2$

  • D

    None of these

Similar Questions

The variance of $\alpha$, $\beta$ and $\gamma$ is $9$, then variance of $5$$\alpha$, $5$$\beta$ and $5$$\gamma$ is

If the variance of the frequency distribution is $160$ , then the value of $\mathrm{c} \in \mathrm{N}$ is

$X$ $c$ $2c$ $3c$ $4c$ $5c$ $6c$
$f$ $2$ $1$ $1$ $1$ $1$ $1$

  • [JEE MAIN 2024]

Let $\mu$ be the mean and $\sigma$ be the standard deviation of the distribution 

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

where $\sum f_i=62$. if $[x]$ denotes the greatest integer $\leq x$, then $\left[\mu^2+\sigma^2\right]$ is equal $.........$.

  • [JEE MAIN 2023]

If $M.D.$ is $12$, the value of $S.D.$ will be

The mean of five observations is $5$ and their variance is $9.20$. If three of the given five observations are $1, 3$ and $8$, then a ratio of other two observations is

  • [JEE MAIN 2019]