- Home
- Standard 11
- Mathematics
13.Statistics
normal
If $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ and $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ then the standard deviation of $x_1, x_2, ...... x_{18}$ is :-
A
$4/9$
B
$9/4$
C
$3/2$
D
None of these
Solution
Varriance of observation $\left(\mathrm{x}_{1}-8\right) \forall \mathrm{i}=1,2,3, \ldots .18$
$=\frac{45}{18}-\left(\frac{9}{18}\right)^{2}=\frac{5}{2}-\frac{1}{4}=\frac{9}{4}$
then $S.D.$ of $x_{1} \forall i=1,2,3, \ldots . .18$
$=\sqrt{\frac{9}{4}}=\frac{3}{2}$
Standard 11
Mathematics
Similar Questions
Let the mean and variance of the frequency distribution
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
be $6$ and $6.8$ respectively. If $x_{3}$ is changed from $8$ to $7 ,$ then the mean for the new data will be: