If $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ then $\theta = $
$\frac{\pi }{6}$
$\frac{\pi }{3}$
$\frac{\pi }{3}$ or $\frac{\pi }{6}$
$\frac{\pi }{3}$ or $\frac{2\pi }{3}$
Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are
If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then
Find the general solution of the equation $\sin 2 x+\cos x=0$
The smallest positive root of the equation $tanx\, -\, x = 0$ lies on
If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is