If $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta  +  \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ then $\theta  = $

  • A

    $\frac{\pi }{6}$

  • B

    $\frac{\pi }{3}$

  • C

     $\frac{\pi }{3}$ or $\frac{\pi }{6}$

  • D

     $\frac{\pi }{3}$ or $\frac{2\pi }{3}$

Similar Questions

Values of $\theta (0 < \theta < {360^o})$ satisfying ${\rm{cosec}}\theta + 2 = 0$ are

If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then

Find the general solution of the equation $\sin 2 x+\cos x=0$

The smallest positive root of the equation $tanx\,  -\,  x = 0$ lies on

If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is