The number of solutions of $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ is equal to :
$5$
$9$
$11$
$7$
If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is
Number of solutions of $8cosx$ = $x$ will be
If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ then the value of $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
All possible values of $\theta \in[0,2 \pi]$ for which $\sin 2 \theta+\tan 2 \theta>0$ lie in
If $\sin 2x + \sin 4x = 2\sin 3x,$ then $x =$