Trigonometrical Equations
hard

The number of solutions of $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ is equal to :

A

$5$

B

$9$

C

$11$

D

$7$

(JEE MAIN-2021)

Solution

$\sin ^{7} x \leq \sin ^{2} x \leq 1….(1)$

$\text { and } \cos ^{7} x \leq \cos ^{2} x \leq 1….(2)$

$\text { also } \sin ^{2} x+\cos ^{2} x=1$

$\Rightarrow \text { equality must hold for }(1) \,\,(2)$

$\Rightarrow \sin ^{7} x=\sin ^{2} x \,\, \cos ^{7}=\cos ^{2} x$

$\Rightarrow \sin x=0\, \, \cos x=1 \text { or }$

$\cos x=0\,  \,\sin x=1$

$\Rightarrow x=0,2 \pi, 4 \pi, \frac{\pi}{2}, \frac{5 \pi}{2}$

$\Rightarrow 5 \text { solutions }$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.