The number of solutions of $\sin ^{7} x+\cos ^{7}=1, x \in[0,4 \pi]$ is equal to :

  • [JEE MAIN 2021]
  • A

    $5$

  • B

    $9$

  • C

    $11$

  • D

    $7$

Similar Questions

The general solution of $\sin x - \cos x = \sqrt 2 $, for any integer $n$ is

If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ then the value of $\cos \left( {\theta - \frac{\pi }{4}} \right) =$

If $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ where $x$ and $y$ both lie in second quadrant, find the value of $\sin (x+y)$.

$\sum\limits_{r = 1}^{100} {\frac{{\tan \,{2^{r - 1}}}}{{\cos \,{2^r}}}} $ is equal to

For which value of $x$  ;  $cosx > sinx,$ where $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$