If $\left( {p \wedge \sim q} \right) \wedge \left( {p \wedge r} \right) \to \sim p \vee q$ is false, then the truth values of $p, q$ and $r$ are respectively
$F, T, F$
$T, F, T$
$F, F, F$
$T, T, T$
The proposition $\left( { \sim p} \right) \vee \left( {p\, \wedge \sim q} \right)$
Among the statements:
$(S1)$ $\quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow( p \Rightarrow r )$
$(S2) \quad(( p \vee q ) \Rightarrow r ) \Leftrightarrow(( p \Rightarrow r ) \vee( q \Rightarrow r ))$
Statement $\quad(P \Rightarrow Q) \wedge(R \Rightarrow Q)$ is logically equivalent to
The statement $p → (p \leftrightarrow q)$ is logically equivalent to :-
Negation of “Paris in France and London is in England” is