1.Relation and Function
hard

यदि $f(x)=\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x}-1, x \in R$ है, तो समीकरण $f(x)=0$ का/के

A

कोई हल नहीं है।

B

एक हल है।

C

दो हल हैं।

D

दो से अधिक हल हैं।

(JEE MAIN-2014)

Solution

$f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} – 1$

Put $f\left( x \right) = 0$

$ \Rightarrow 0 = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} – 1$

$ \Rightarrow {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} – 1$

$ \Rightarrow {3^x} + {4^x} = {5^x}$ 

        For $x=1$

        ${3^1} + {4^1} > {5^1}$

for $x=3$

${3^3} + {4^3} = 91 < {5^3}$

Only for $x=2$, equation $(1)$ Satisfy 

So, only one solution $(x=2)$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.