यदि $f(x)=\left(\frac{3}{5}\right)^{x}+\left(\frac{4}{5}\right)^{x}-1, x \in R$ है, तो समीकरण $f(x)=0$ का/के
कोई हल नहीं है।
एक हल है।
दो हल हैं।
दो से अधिक हल हैं।
माना $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1)$ है, जहाँ सभी प्राकृत संख्याओं $x , y$
के लिए, फलन $f , f ( x + y )= f ( x ) f ( y )$ को संतुष्ट करता है तथा $f ( a )=2$ है। तो प्राकृत संख्या $^{\prime} a ^{\prime}$ बराबर है :
सिद्ध कीजिए कि $f: R \rightarrow\{x \in R :-1 < x < 1\}$ जहाँ $f(x)=\frac{x}{1+|x|}, x \in R$ द्वारा
परिभाषित फलन एकैकी तथा आच्छादक है ।
माना $f(x)$ एक द्विघाती बहुपद है जिसका मुख्य-गुणांक 1 है तथा $f (0)= p , p \neq 0$ और $f (1)=\frac{1}{3}$ हैं। यदि समीकरणों $f ( x )=0$ तथा $fofofof (x)=0$ का एक उभयनिष्ठ वास्तविक मूल है, तो $f(-3)$ बराबर है
$x \in R , x \neq 0, x \neq 1$ के लिए माना $f_{0}(x)=\frac{1}{1-x}$ तथा $f_{n+1}(x)=f_{0}\left(f_{n}(x)\right), n=0,1,2, \ldots$ है, तो $f_{100}(3)+f_{1}\left(\frac{2}{3}\right)+f_{2}\left(\frac{3}{2}\right)$ बराबर है
यदि $R$ वास्तविक संख्याओं का एक समुच्चय इस प्रकार है कि $f: R \rightarrow R$ निम्नलिखित द्वारा परिभाषित होता है
$f(x)=\frac{[x]}{1+[x]^2}$, जहाँ $[x]$ अधिकतम पूर्णांक जो $x$ के बराबर या उससे छोटा है तथा $[x\}=x-[x]$.तब निम्नलिखित में से कौन सा कथन सत्य है ?
$I$. $f^{\prime}$ का परास $(range)$ एक बंद अन्तराल $(closed\,interval)$ है
$II$. $f, R$ पर सतत $(continuous)$ फलन है
$III$. $f$. $I$पर एकैक $(one-one)$ फलन है