यदि $y = f(x) = \frac{{ax + b}}{{cx - a}}$, तब $x =$
$1/f(x)$
$1/f(y)$
$yf(x)$
$f(y)$
माना $S =\{1,2,3,4\}$ है। तब समुच्चय \{f: $S \times S \rightarrow S : f$ आच्छादक तथा $f ( a , b )= f ( b , a \geq a \forall( a , b ) \in S \times S \}$ में अवयवों की संख्या है
यदि $R=\left\{(x, y): x, y \in Z , x^{2}+3 y^{2} \leq 8\right\}$ पूर्णांक $Z$ के समुच्चय का संबंध है तो $R^{-1}$ का प्रक्षेत्र है
माना $f: N \rightarrow N$ एक फलन है, जिसके लिए $f( m + n )=f( m )+f( n ) \forall m , n \in N$ है। यदि $f(6)=18$ है, तो $f(2) \cdot f(3)$ बराबर है
यादि $f(x) = \sin \log x$, तब $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y$ का मान है
फलन $f(x) = \frac{{x + 2}}{{|x + 2|}}$ का परिसर (रेंज) है