જો $\left| \begin{array}{*{20}{c}}
{ - 2a}&{a + b}&{a + c}\\
{b + a}&{ - 2b}&{b + c}\\
{c + a}&{b + c}&{ - 2c}
\end{array}\right|$ $ = \alpha \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \ne 0$ તો $\alpha $ મેળવો.

  • [AIEEE 2012]
  • A

    $a + b + c$

  • B

    $abc$

  • C

    $4$

  • D

    $1$

Similar Questions

જો $\left| {\begin{array}{*{20}{c}}{x - 4}&{2x}&{2x}\\{2x}&{x - 4}&{2x}\\{2x}&{2x}&{x - 4}\end{array}} \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2},$ તો ક્રમયુકત જોડ $\left( {A,B} \right) = $. . . . .

  • [JEE MAIN 2018]

જો સમીકરણોની સંહતિ $kx + 2y - z = 2,$$\left( {k - 1} \right)x + ky + z = 1,x + \left( {k - 1} \right)y + kz = 3$ ને માત્ર એકજ ઉકેલ હોય તો $k$ ની શક્ય વાસ્તવિક કિમંતોની સંખ્યા મેળવો.

સમીકરણ સંહતિને ધ્યાનમાં લ્યો.

$-x+y+2 z=0$  ;   $3 x-a y+5 z=1$  ; $2 x-2 y-a z=7$

જો ગણ $S_{1}$ એ દરેક  $\mathrm{a} \in {R}$ કે જેના માટે સમીકરણ સહંતિ સુંસંગત નથી તેને સમાવે છે  અને  $S_{2}$ એ $a \in {R}$ કે જેના માટે સમીકરણને અનંત ઉકેલ તેને સમાવે છે . જો $n\left(S_{1}\right)$ અને $n\left(S_{2}\right)$ એ અનુક્રમે $S_{1}$ અને $\mathrm{S}_{2}$ ની સભ્ય સંખ્યા હોય તો 

  • [JEE MAIN 2021]

જો $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. તો $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|= . . . $

  • [IIT 2002]

જો સમીકરણની સંહતિ $x + ay = 0,$ $az + y = 0$ અને $ax + z = 0$ ને અનંત ઉકેલ હોય, તો $a$ ની કિમત મેળવો

  • [IIT 2003]