જો $\sum\limits_{r = 0}^{25} {\left\{ {^{50}{C_r}.{\,^{50 - r}}{C_{25 - r}}} \right\} = K\left( {^{50}{C_{25}}} \right)} $ હોય તો $K$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]
  • A

    $(25)^2$

  • B

    $2^{25} -1$

  • C

    $2^{24}$

  • D

    $2^{25}$

Similar Questions

${(1 + x - 3{x^2})^{2163}}$ વિસ્તરણમાં સહગુણકોનો સરવાળો મેળવો.

  • [IIT 1982]

જો $C_{x} \equiv^{25} C_{x}$ અને $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ હોય તો  $\mathrm{k}$ મેળવો.

  • [JEE MAIN 2020]

 જો  $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+ $ $ (\mathrm{x}+3)^{\mathrm{n}-3}(\mathrm{x}+2)^2+\ldots . .+(\mathrm{x}+2)^{\mathrm{n}-1}$ માં $x^r$ નો સહગુણક $\alpha_{\mathrm{r}}$ છે. જો $\sum_{\mathrm{r}-0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, તો $\beta^2+\gamma^2=$.................. 

  • [JEE MAIN 2024]

${(1 + x - 3{x^2})^{3148}}$ ના સહગુણકનો સરવાળો મેળવો.

ધારોકે $\left(a+b x+c x^2\right)^{10}=\sum \limits_{i=0}^{20} p_i x^i a, b, c \in N$ જો $p_1=20$ અને $p_2=210$ હીય, તો $2(a+b+c)=.......$

  • [JEE MAIN 2023]