Let n and k be positive integers such that $n \ge \frac{{k(k + 1)}}{2}$. The number of solutions $({x_1},{x_2},....{x_k})$, ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ all integers, satisfying ${x_1} + {x_2} + .... + {x_k} = n$, is

  • [IIT 1996]
  • A

    $^m{C_{k - 1}}$

  • B

    $^m{C_{k + 1}}$

  • C

    $^m{C_k}$

  • D

    None of these {Where $m = \frac{1}{2}(2n - {k^2} + k - 2)$}

Similar Questions

જો ${(1 + x)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ...... + {C_{15}}{x^{15}},$ તો ${C_2} + 2{C_3} + 3{C_4} + .... + 14{C_{15}} = $

  • [IIT 1966]

જો ${a_k} = \frac{1}{{k(k + 1)}},$( $k = 1,\,2,\,3,\,4,.....,\,n$), તો ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $

જો $r,k,p \in W,$ હોય તો $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ ની કિમત મેળવો 

શ્રેણી $aC_0 + (a + b)C_1 + (a + 2b)C_2 + ..... + (a + nb)C_n$ નો સરવાળો મેળવો 

જ્યાં $Cr's$ એ $(1 + x)^n, n \in N$ ના વિસ્તરણમાં સહગુણક દર્શાવે છે 

$\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]