7.Binomial Theorem
hard

यदि $\sum_{ r =0}^{25}\left\{{ }^{50} C _{ r } \cdot{ }^{50- r } C _{25- r }\right\}= K \left({ }^{50} C _{25}\right)$ हो, तो $K$ का मान होगा

A

$(25)^2$

B

$2^{25} -1$

C

$2^{24}$

D

$2^{25}$

(JEE MAIN-2019)

Solution

$\sum\limits_{r = 1}^{25} {\frac{{\left| {50} \right.}}{{\left| r \right.\left| {50} \right. – r}} \times \frac{{\left| {50 – r} \right.}}{{\left| {25 – r\left| {25} \right.} \right.}}} $

$ = \sum\limits_{r = 1}^{25} {\frac{{\left| {50} \right.}}{{\left| {r\left| {25 – r\left| {25} \right.} \right.} \right.}}} $

$ = \frac{{\left| {50} \right.}}{{\left| {25} \right.}}\sum\limits_{r = 1}^{25} {\frac{1}{{\left| {r\left| {25 – r} \right.} \right.}}} $

$ = \frac{{\left| {50} \right.}}{{\left| {25\left| {25} \right.} \right.}}\sum\limits_{r = 1}^{25} {{\,^{25}}{C_r} = {\,^{50}}{C_{25}}} \left( {{2^{25}} – 1} \right)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.