$\left(1-x-x^{2}+x^{3}\right)^{6}$ के प्रसार में $x^{7}$ का गुणांक है:
$-132$
$-144$
$132$
$144$
${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=
$\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$ का मान है
यदि गुणनफल $\left(1+ x + x ^{2}+\ldots+ x ^{2 n }\right)\left(1- x + x ^{2}\right.$ $\left.- x ^{3}+\ldots+ x ^{2 n }\right)$ में, $x$ के सभी सम-घातों वाले गुणाकों का योगफल $61$ है, तो $n$ बराबर ....... है |
${(1 + x)^n}$के प्रसार में $x$ की विषम घातों के गुणांकों का योग है
यदि $\sum_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ जहाँ $\alpha \in R$, तब $16 \alpha$ का मान होगा ?