मान लीजिए कि $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !} \mid$ तब योग $\frac{1}{2^{10}} \sum_{k=0}^{10}\left(\frac{10}{k}\right) k^2$ का मान किस अंतराल में होगा ?

  • [KVPY 2021]
  • A

    $(26,27)$

  • B

    $(27,28)$

  • C

    $(28,29)$

  • D

    $(29,30)$

Similar Questions

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n},$ तो $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

' $x$ ' का एक संभव मान, जिसके लिए व्यंजक $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ के $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ की बढ़ती घातों में प्रसार में नौवॉँ पद $180$ के बराबर है

  • [JEE MAIN 2021]

यदि $\sum_{ r =1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !)$ है, तो $\alpha$ का मान बराबर है ............ |

  • [JEE MAIN 2021]

$x \in R , x \neq-1$ के लिए, यदि $(1+x)^{2016}+x(1+x)^{2015}+x^{2}(1+x)^{2014}$ $+\ldots .+x^{2016}=\sum_{i=0}^{2016} a_{i} x^{i}$ है, तो $a_{17}$ बराबर है

 

  • [JEE MAIN 2016]

यदि $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^n C_1+{ }^n C_0=\frac{1023}{10}$ है, तो $\mathrm{n}$ बराबर है :

  • [JEE MAIN 2023]