यदि $\sum_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$ जहाँ $\alpha \in R$, तब $16 \alpha$ का मान होगा ?

  • [JEE MAIN 2022]
  • A

    $1411$

  • B

    $1320$

  • C

    $1615$

  • D

    $1855$

Similar Questions

${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $

यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ... + {C_n}{x^n}$, तब  ${C_0} + {C_2} + {C_4} + {C_6} + .....$ का मान होगा

माना $\sum_{\mathrm{r}=0}^{2023} \mathrm{r}^2{ }^{2023} \mathrm{C}_{\mathrm{r}}=2023 \times \alpha \times 2^{2022}$ है। तो $\alpha$ का मान है___________. 

  • [JEE MAIN 2023]

श्रेणी $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,inksa rd } \right)} $ का योगफल है

${({x^2} - x - 1)^{99}}$ के गुणांकों का योग है