બે સદિશ $\vec A$ અને $\vec B$ સમાન માન ધરાવે છે. $(\vec A + \vec B)$ નું માન એ $(\vec A - \vec B)$ ના માન કરતા $n$ ગણું છે. $\vec A$ અને $\vec B$ વચ્ચેનો ખૂણો કેટલો હશે?
આકૃતિમાં રહેલ સદિશ $\overrightarrow{ OA }, \overrightarrow{ OB }$ અને $\overrightarrow{ OC }$ ના મૂલ્ય સમાન છે. $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ ની $x$-અક્ષ સાથેની દિશા કેટલી થાય?
અનુક્રમે $2F$ અને $3F$ માનના બે બળો $P$ અને $Q$ એકબીજા સાથે $\theta $ કોણ બનાવે છે. જો બળ $Q$ ને બમણો કરીયે, તો તેમનું પરિણામ પણ બમણું થાય છે. તો આ ખૂણો $\theta $ કેટલો હશે?
$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $a$ અને તેનું પરિકેન્દ્ર $O$ છે. If $|\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{A C}|=n a$ હોય તો $n =....$
બે સદિશો $ \hat i - 2\hat j + 2\hat k $ અને $ 2\hat i + \hat j - \hat k, $ માં કયો સદિશ ઉમેરવાથી $X-$ દિશામાંનો એકમ સદિશ મળે.