- Home
- Standard 12
- Mathematics
જો $g(x) = 2f (2x^3 - 3x^2) + f(6x^2 - 4x^3 - 3)$, $\forall x \in R$ અને $f"(x) > 0, \forall x \in R$ તો $g'(x) > 0$ થાય તે માટે $x \,\in$
$\left( { - \infty , - \frac{1}{2}} \right) \cup \left( {0,1} \right)$
$\left( { - \frac{1}{2},0} \right) \cup \left( {1,\infty } \right)$
$\left( {0,\infty } \right)$
$\left( { - \infty ,1} \right)$
Solution
Since $f^{\prime}(x)>0$
$\Rightarrow f^{\prime}(x)$ is always increasing
$\mathrm{g}^{\prime}(\mathrm{x})=2 \mathrm{f}^{\prime}\left(2 \mathrm{x}^{3}-3 \mathrm{x}^{2}\right) \times\left(6 \mathrm{x}^{2}-6 \mathrm{x}\right)+\mathrm{f}^{\prime}\left(6 \mathrm{x}^{2}-4 \mathrm{x}^{3}-3\right)\left(12 \mathrm{x}-12 \mathrm{x}^{2}\right)$
$=12\left(\mathrm{x}^{2}-\mathrm{x}\right)\left(\mathrm{f}^{\prime}\left(2 \mathrm{x}^{3}-3 \mathrm{x}^{2}\right)-\mathrm{f}^{\prime}\left(6 \mathrm{x}^{2}-4 \mathrm{x}^{3}-3\right)\right)$
$\left.=12 \mathrm{x}(\mathrm{x}-1)]\left[\mathrm{f}^{\prime}\left(2 \mathrm{x}^{3}-3 \mathrm{x}^{2}\right)-\mathrm{f}^{\prime}\left(6 \mathrm{x}^{2}-4 \mathrm{x}^{3}-3\right)\right)\right]$
For increasing $g^{\prime}(x)>0$
Case – $I$ $\quad x<0$ or $x>1$
$\Rightarrow f\left(2 x^{3}-3 x^{2}\right)>f^{\prime}\left(6 x^{2}-4 x^{3}-3\right)$
$\Rightarrow 2 x^{3}-3 x^{2}>6 x^{2}-4 x^{3}-3$
$\left(\because f^{\prime}(x) \text { is increasing }\right)$
$\Rightarrow(x-1)^{2}\left(x+\frac{1}{2}\right)>0 \Rightarrow x>-\frac{1}{2}$
$\therefore x \in\left(-\frac{1}{2}, 0\right) \cup(1, \infty)$
Case $II$ : If $0$
$f^{\prime}\left(2 x^{3}-3 x^{2}\right)$
$(x-1)^{2}\left(x+\frac{1}{2}\right)<0$
$\Rightarrow x<-\frac{1}{2},$ so there is no solution
$x<-\frac{1}{2}$
$\Rightarrow$ Hence the values are $x \in\left(-\frac{1}{2}, 0\right) \cup(1, \infty)$