If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-
$\frac{2}{5}$
$\frac{1}{10}$
$4$
$\frac{-2}{5}$
The number of real roots of the equation $\mathrm{e}^{4 \mathrm{x}}-\mathrm{e}^{3 \mathrm{x}}-4 \mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{\mathrm{x}}+1=0$ is equal to $.....$
The number of integers $n$ for which $3 x^3-25 x+n=0$ has three real roots is
If $72^x \cdot 48^y=6^{x y}$, where $x$ and $y$ are non-zero rational numbers, then $x+y$ equals
If $x$ be real, the least value of ${x^2} - 6x + 10$ is
$\{ x \in R:|x - 2|\,\, = {x^2}\} = $