- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-
A
$\frac{2}{5}$
B
$\frac{1}{10}$
C
$4$
D
$\frac{-2}{5}$
Solution
$\mathrm{x}^{4}-100 \mathrm{x}^{3}+2 \mathrm{x}^{2}+4 \mathrm{x}+10=0 \rightarrow \alpha, \beta, \gamma, \delta$
$\mathrm{eq}^{\mathrm{n}}$ whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$ is
$10 x^{4}+4 x^{3}+2 x^{2}-100 x+1=0 \rightarrow \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$
$\mathrm{SOR} \Rightarrow \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}=\frac{-4}{10}=\frac{-2}{5}$
Standard 11
Mathematics