If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-

  • A

    $\frac{2}{5}$

  • B

    $\frac{1}{10}$

  • C

    $4$

  • D

    $\frac{-2}{5}$

Similar Questions

Let $a, b, c$ be the length of three sides of a triangle satisfying the condition $\left(a^2+b^2\right) x^2-2 b(a+c)$. $x+\left(b^2+c^2\right)=0$. If the set of all possible values of $x$ is the interval $(\alpha, \beta)$, then $12\left(\alpha^2+\beta^2\right)$ is equal to............................

  • [JEE MAIN 2024]

The number of real solutions of the equation $|x{|^2}$-$3|x| + 2 = 0$ are

  • [IIT 1982]

Let $a, b, c, d$ be real numbers such that $|a-b|=2$, $|b-c|=3,|c-d|=4$. Then, the sum of all possible values of $|a-d|$ is

  • [KVPY 2011]

If $\log _{(3 x-1)}(x-2)=\log _{\left(9 x^2-6 x+1\right)}\left(2 x^2-10 x-2\right)$, then $x$ equals

  • [KVPY 2015]

The number of real solutions of the equation $e ^{4 x }+4 e ^{3 x }-58 e ^{2 x }+4 e ^{ x }+1=0$ is..........

  • [JEE MAIN 2022]