4-2.Quadratic Equations and Inequations
normal

If $\alpha,\beta,\gamma, \delta$ are the roots of $x^4-100x^3+2x^2+4x+10 = 0$ then $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ is equal to :-

A

$\frac{2}{5}$

B

$\frac{1}{10}$

C

$4$

D

$\frac{-2}{5}$

Solution

$\mathrm{x}^{4}-100 \mathrm{x}^{3}+2 \mathrm{x}^{2}+4 \mathrm{x}+10=0 \rightarrow \alpha, \beta, \gamma, \delta$

$\mathrm{eq}^{\mathrm{n}}$ whose roots are $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$ is

$10 x^{4}+4 x^{3}+2 x^{2}-100 x+1=0 \rightarrow \frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}, \frac{1}{\delta}$

$\mathrm{SOR} \Rightarrow \frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}=\frac{-4}{10}=\frac{-2}{5}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.