If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then
$k=c$
$k = -\frac{c}{b}$
$a + \frac{c}{{2b}} + k = 0$
none of these
Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$
The number of solution$(s)$ of the equation $2^x = x^2$ is
If $a,b,c$ are real and ${x^3} - 3{b^2}x + 2{c^3}$ is divisible by $x - a$ and$x - b$, then
The number of real values of $x$ for which the equality $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ holds good is
If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $