- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
If the graph of $y = ax^3 + bx^2 + cx + d$ is symmetric about the line $x = k$ then
A
$k=c$
B
$k = -\frac{c}{b}$
C
$a + \frac{c}{{2b}} + k = 0$
D
none of these
Solution
$\therefore a=0$ and $y=b x^{2}+c x+d$ is symmetric
about $x=-\frac{c}{2 b}$
$\therefore \mathrm{x}=\mathrm{k}=-\frac{c}{2 b} \Rightarrow k+\frac{c}{2 b}=0$
$\Rightarrow a+\frac{c}{2 b}+k=0$
Standard 11
Mathematics