Let $\alpha$ and $\beta$ be the roots of $x^2-6 x-2=0$, with $\alpha>\beta$. If $a_n=\alpha^n-\beta^n$ for $n \geq 1$, then the value of $\frac{a_{10}-2 a_8}{2 a_9}$ is
$1$
$2$
$3$
$4$
If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $
For the equation $|{x^2}| + |x| - 6 = 0$, the roots are
Suppose $a$ is a positive real number such that $a^5-a^3+a=2$. Then,
Product of real roots of the equation ${t^2}{x^2} + |x| + \,9 = 0$
The number of distinct real roots of the equation $|\mathrm{x}||\mathrm{x}+2|-5|\mathrm{x}+1|-1=0$ is....................