- Home
- Standard 11
- Mathematics
Let $\alpha$ and $\beta$ be the roots of $x^2-6 x-2=0$, with $\alpha>\beta$. If $a_n=\alpha^n-\beta^n$ for $n \geq 1$, then the value of $\frac{a_{10}-2 a_8}{2 a_9}$ is
$1$
$2$
$3$
$4$
Solution
Since $\alpha$ and $\beta$ are the roots(solutions) of the equation
$x^2-6 x-2=0$
So, it will satisfy the equation
$\alpha^2-6 \alpha-2=0$
$\beta^2-6 \beta-2=0$
Now, we have to find the value of $\frac{a_{10}-2 a_8}{2 a_9}$
Given, $a_n=\alpha^n-\beta^n$
So, $a_{10}=\alpha^{10}-\beta^{10}$
So, to get the values of $\alpha^{10}$ and $\beta^{10}$, multiplying equation $(1)$ and $(2)$ by $\alpha^8$ and $\beta^8$ respectively.
$\alpha^{10}-6 \alpha^9-2 \alpha^8=0$
$\text { or, } \alpha^{10}=6 \alpha^9+2 \alpha^8 \ldots . . \text { (4) }$
$\beta^{10}-6 \beta^9-2 \beta^8=0$
$\text { or, } \beta^{10}=6 \beta^9+2 \beta^8 \ldots . . \text { (5) }$
So, using equation$(4)$ and $(5)$ in $(3)$, we get
$a_{10}=6 \alpha^9+2 \alpha^8-\left(6 \beta^9+2 \beta^8\right)$
$a_{10}=6 \alpha^9+2 \alpha^8-6 \beta^9-2 \beta^8$
$=6\left(\alpha^9-\beta^9\right)+2\left(\alpha^8-\beta^8\right)$
$a_{10}=6 a_9+2 a_8$
$a_{10}-2 a_8=6 a_9$
$\frac{a_{10}-2 a_8}{2 a_9}=3$