Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,

  • [KVPY 2017]
  • A

    $\left|x_i\right|=2$ for exactly one value of $i$

  • B

    $\left|x_i\right|=2$ for exactly two values of $i$

  • C

    $\left|x_i\right|=2$ for all values of $i$

  • D

    $\left|x_i\right|=2$ for no value of $i$

Similar Questions

If $x$ be real, then the minimum value of ${x^2} - 8x + 17$ is

The product of the roots of the equation $9 x^{2}-18|x|+5=0,$ is

  • [JEE MAIN 2020]

Number of integers satisfying inequality, $\sqrt {{{\log }_3}(x) - 1}  + \frac{{\frac{1}{2}{{\log }_3}\,{x^3}}}{{{{\log }_3}\,\frac{1}{3}}} + 2 > 0$ is

The set of values of $x$ which satisfy $5x + 2 < 3x + 8$ and $\frac{{x + 2}}{{x - 1}} < 4,$ is

If $\alpha ,\,\beta ,\,\gamma $ are the roots of the equation ${x^3} + 4x + 1 = 0,$ then ${(\alpha + \beta )^{ - 1}} + {(\beta + \gamma )^{ - 1}} + {(\gamma + \alpha )^{ - 1}} = $