Let $x_1, x_2, \ldots, x_6$ be the roots of the polynomial equation $x^6+2 x^5+4 x^4+8 x^3+16 x^2+32 x+64=0$. Then,
$\left|x_i\right|=2$ for exactly one value of $i$
$\left|x_i\right|=2$ for exactly two values of $i$
$\left|x_i\right|=2$ for all values of $i$
$\left|x_i\right|=2$ for no value of $i$
Let $p_1(x)=x^3-2020 x^2+b_1 x+c_1$ and $p_2(x)=x^3-2021 x^2+b_2 x+c_2$ be polynomials having two common roots $\alpha$ and $\beta$. Suppose there exist polynomials $q_1(x)$ and $q_2(x)$ such that $p_1(x) q_1(x)+p_2(x) q_2(x)=x^2-3 x+2$. Then the correct identity is
The sum of all the real values of $x$ satisfying the equation ${2^{\left( {x - 1} \right)\left( {{x^2} + 5x - 50} \right)}} = 1$ is
If the sum of two of the roots of ${x^3} + p{x^2} + qx + r = 0$ is zero, then $pq =$
The real roots of the equation ${x^2} + 5|x| + \,\,4 = 0$ are
Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,