If $A + B + C = \frac{\pi }{2}$ ,then value of $tanA\,\, tanB + tanB\,\, tanC + tanC\,\, tanA$ is

  • A

    $0$

  • B

    $tanA\,\,  tanB\,\,   tanC$

  • C

    $1$

  • D

    $-1$

Similar Questions

In a triangle $\tan A + \tan B + \tan C = 6$ and $\tan A\tan B = 2,$ then the values of $\tan A,\,\,\tan B$ and $\tan C$ are

$2\sin A{\cos ^3}A - 2{\sin ^3}A\cos A = $

$\sqrt 3 \,{\rm{cosec}}\,{20^o} - \sec \,{20^o} = $

  • [IIT 1988]

If $A + B + C = {180^o},$ then the value of $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ will be

If $\sin x + \cos x = \frac{1}{5},$ then $\tan 2x$ is