- Home
- Standard 11
- Mathematics
જો $A + B + C = \frac{\pi }{2}$ થાય તો $tanA\,\, tanB + tanB\,\, tanC + tanC\,\, tanA$ =
$0$
$tanA\,\, tanB\,\, tanC$
$1$
$-1$
Solution
We have,
$A + B + C =90$ (degree)
Now,
$A+B=90-C \ldots \ldots .(1)$
Then,
$\tan (A+B)=\tan (90-C)(\text { from }(1))$
or, $\tan (A+B)=\tan (90-C) \ldots \ldots(2)$
$As$
$\tan (x+y)=(\tan x+\tan y) /(1-\tan x \tan y) \ldots \ldots(3)$
and, $\tan (90-x)=\cot x \ldots \ldots(4)$
$\cup \operatorname{sing}(3)$ and (4) in $(2),$ we get
$(\tan A+\tan B) /(1-\tan A \tan B)=\cot C$
or, $(\tan A+\tan B) /(1-\tan A \tan B)=1 / \tan C$
or, $(\tan C)(\tan A+\tan B)=(1-\tan A \tan B)$
or, $(\tan C \tan A)+(\tan B \tan C)=(1-\tan A \tan B)$
or, tan $A$ tan $B +\tan B \tan C +\tan C \tan A =1$
Therefore, we have
$\tan A \tan B +\tan B \tan C +\tan C \tan A =1$