સાબિત કરો કે : $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
$L.H.S.$ $=\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}$
$=\frac{(\cos 4 x+\cos 2 x)+\cos 3 x}{(\sin 4 x+\sin 2 x)+\sin 3 x}$
$=\frac{2 \cos \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\cos 3 x}{2 \sin \left(\frac{4 x+2 x}{2}\right) \cos \left(\frac{4 x-2 x}{2}\right)+\sin 3 x}$
$[\because \cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right),$
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)]$
$=\frac{2 \cos 3 x \cos +\cos 3 x}{2 \sin 3 x \cos x+\sin 3 x}$
$=\frac{\cos 3 x(2 \cos x+1)}{\sin 3 x(2 \cos x+1)}$
$\cot 3 x=R .H .S.$
$\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ = $
જો $\cos A = \frac{3}{4}$, તો $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
જો $\alpha + \beta - \gamma = \pi ,$ તો ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $
$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{4\pi }}{7} = $
$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $