4-1.Complex numbers
normal

જો $5 + ix^3y^2$ અને $x^3 + y^2 + 6i$ એ અનુબધ્ધ સંકર સંખ્યાઓ છે અને arg $(x + iy) = \theta $ ,હોય તો ${\tan ^2}\,\theta $ ની કિમત મેળવો 

A

$4$

B

$5$

C

$6$

D

$7$

Solution

$x^{3}+y^{2}=5 $ and $ x^{3} y^{2}=-6$

$\Rightarrow \mathrm{t}^{2}-5 \mathrm{t}-6=0$ has roots given by $\mathrm{x}^{3} $ and $ \mathrm{y}^{2}$

or $t=6,-1$

$\Rightarrow x^{3}=-1 $ and $ y^{2}=6$

$ \therefore  \arg (\mathrm{x}+\mathrm{iy})=\tan ^{-1}(\pm \sqrt{6}) \text { or } \tan ^{2} \theta=6$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.