If $5 + ix^3y^2$ and $x^3 + y^2 + 6i$ are conjugate complex numbers and arg $(x + iy) = \theta $ , then ${\tan ^2}\,\theta $ is equal to

  • A

    $4$

  • B

    $5$

  • C

    $6$

  • D

    $7$

Similar Questions

Let $z$ be a complex number with non-zero imaginary part. If $\frac{2+3 z+4 z^2}{2-3 z+4 z^2}$ is a real number, then the value of $|z|^2$ is. . . . . 

  • [IIT 2022]

Let $z$be a purely imaginary number such that ${\mathop{\rm Im}\nolimits} \,(z) > 0$. Then $arg(z)$ is equal to

If $|z|\, = 4$ and $arg\,\,z = \frac{{5\pi }}{6},$then $z =$

The solution of the equation $|z| - z = 1 + 2i$ is

If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is