$\frac{{{{(2 + i)}^2}}}{{3 + i}}$ ની અનુબદ્ધને $a + ib$ સ્વરૂપમાં દર્શાવો.
$\frac{{13}}{2} + i\,\left( {\frac{{15}}{2}} \right)$
$\frac{{13}}{{10}} + i\left( {\frac{{ - 15}}{2}} \right)$
$\frac{{13}}{{10}} + i\,\left( {\frac{{ - 9}}{{10}}} \right)$
$\frac{{13}}{{10}} + i\,\left( {\frac{9}{{10}}} \right)$
જો ${z_1}$ અને ${z_2}$ બે સંકર સંખ્યા હોય ,તો $|{z_1} + {z_2}{|^2}$ $ + |{z_1} - {z_2}{|^2}$ =...
જો $\bar z$ એ $z$ ની અનુબદ્ધ સંકર સંખ્યા હોય , તો આપેલ પૈકી ક્યો સંબંધ અસત્ય છે .
વિધાનો
વિધાન $I$: કોઈ બે શુન્યેતર સંકર સંખ્યાઓ $z_1, z_2$
માટે $\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ અને
વિધાન $II$ : જો $x, y, z$ એ ત્રણ ભિન્ન સંકર સંખ્યાઓ હોય તથા $\mathrm{a}, \mathrm{b}, \mathrm{c}$ એ ત્રણ ધન વાસ્તવિક સંખ્યાઓ એવી હોય કે જેથી
$\frac{\mathrm{a}}{|y-z|}=\frac{\mathrm{b}}{|z-x|}=\frac{\mathrm{c}}{|x-y|}$ તો $\frac{\mathrm{a}^2}{y-z}+\frac{\mathrm{b}^2}{z-x}+\frac{\mathrm{c}^2}{x-y}=1$
જો $(x-i y)(3+5 i)$ એ $-6-24 i$ ની અનુબદ્ધ સંકર સંખ્યા હોય, તો વાસ્તવિક સંખ્યાઓ $x$ અને $y$ શોધો.
જો સંકર સંખ્યા $z$ માટે $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0$ હોય તો $\left| z \right|$ ની કિમત મેળવો.