જો સંબંધ $R$: $\left\{ {\left( {x,y} \right);3x + 3y = 10} \right\} $ એ ગણ $N$ પર વ્યાખિયાયિત છે
વિધાન $-1$ : $R$ એ સમિત છે
વિધાન $-2$ : $R$ એ સ્વવાચક છે
વિધાન $-3$ : $R$ એ પરંપરિત છે.
હોય તો આપેલ વિધાન માટે સાચી શ્રેણી ........... થાય.
(જ્યા $T$ અને $F$ નો અર્થ અનુક્ર્મે સાચુ અને ખોટુ છે.)
$TFF$
$FTT$
$TFT$
$TTF$
જો $m$ એ $n$ નો ગુણક હોય તો $m$ અને $n$ વચ્ચે સંબંધ હોય તો આપેલ સંબંધએ . ..
જો સંબંધ $R$ એ વાસ્તવિક સંખ્યાગણ $R$ પર $aRb=\{|a - b| \le 1\}$ દ્વારા વ્યાખ્યાયિત હોય તો સંબંધ $R$ એ . . . .
ધારો કે $A=\{2,3,6,7\}$ અને $B=\{4,5,6,8\}$. ધારો કે $R$ એ $A \times B$ પર ' $\left(a_1, b_1\right) R\left(a_2, b_2\right)$ તો અને તોજ $a_1+a_2=b_1+b_2^{\prime}$ વડે વ્યાખ્યાયિત સંબંધ છે, તો $R$ માં સભ્યોની સંખ્યા............. છે.
કોઈ ચોક્કસ સમયે કોઈ એક નગરમાં વસતા મનુષ્યોના ગણ $A$ પર વ્યાખ્યાયિત સંબંધ $R =\{(x, y): x$ એ $y$ ની પત્ની છે. $\} $ સ્વવાચક, સંમિત અથવા પરંપરિત સંબંધ છે કે નહિ તે નક્કી કરો ?
જો $R$ એ $n$ ઘટક ધરાવતા શાન્ત ગણ $A$ પરનો સ્વવાચક સંબંધ છે અને $R$ માં $m$ કષ્મયુકત જોડ હોય તો . . .