ધારો કે $A=\{2,3,6,7\}$ અને $B=\{4,5,6,8\}$. ધારો કે $R$ એ $A \times B$ પર ' $\left(a_1, b_1\right) R\left(a_2, b_2\right)$ તો અને તોજ $a_1+a_2=b_1+b_2^{\prime}$ વડે વ્યાખ્યાયિત સંબંધ છે, તો $R$ માં સભ્યોની સંખ્યા............. છે.
$34$
$25$
$31$
$20$
સાબિત કરો કે વાસ્તવિક સંખ્યાઓના ગણ $R$ પર $R =\left\{(a, b): a \leq b^{2}\right\}$ વડે વ્યાખ્યાયિત સંબંધ $S$. સ્વવાચક, સંમિત અને પરંપરિત સંબંધ પૈકી એક પણ નથી.
જો $R = \{(6, 6), (9, 9), (6, 12), (12, 12), (12,6)\}$ એ ગણ $A = \{3, 6, 9, 12\}$ પર સંબંધ વ્યાખ્યાયિત હોય તો સંબંધ $R$ એ ........... છે.
જો સંબંધ $R$ એ ગણ $A = \{2,3,4,5\}$ થી ગણ $B = \{3,6,7,10\}$ પર વ્યાખિયાયિત છે. $R = \{(a,b) |$ $a$ એ $b$ નો અવયવ છે. $a \in A, b \in B\}$,હોય તો $R^{-1}$ ના સભ્યો ની સંખ્યા ......... હોય.
જો $R$ એ ગણ $A$ પરનો સામ્ય સંબંધ હોય તો ${R^{ - 1}}$ એ . . . . થાય.
પ્રત્યેક $a, b \in R$ માટે $a R_1 b \Leftrightarrow a^2+b^2=1$ અને પ્રત્યેક $(a, b),(c, d) \in N \times N$ માટે $(a, b) R_2(c, d) \Leftrightarrow a+d=b+c$ વડે વ્યાખ્યાયિત સંબંધો $R_1$ અને $R_2$ ધ્યાને લો. તો__________.