यदि $x_{1}, x_{2}, \ldots ., x_{n}$ तथा $\frac{1}{h_{1}}, \frac{1}{h_{2}}, \ldots ., \frac{1}{h_{n}}$ दो ऐसी समांतर श्रेढियां हैं कि $x_{3}=h_{2}=8$ तथा $x_{8}=h_{7}=20$ है, तो $x_{5} . h_{10}$ का मान है
$2560$
$2650$
$3200$
$1600$
श्रेणी $a,a + nd,\,\,a + 2nd$ का माध्य होगा
किसी समांतर श्रेढ़ी में पदों की संख्या सम है। इसके विषम पदों का योग $24$ है तथा सम पदों का योग $30$ है। यदि अंतिम पद, प्रथम पद से $10 \frac{1}{2}$ अधिक है, तो समांतर श्रेढ़ी में पदों की संख्या है
$5$ और $26$ के बीच ऐसी $5$ संख्याएँ डालिए ताकि प्राप्त अनुक्रम समांतर श्रेणी बन जाए।
एक समान्तर श्रेणी का छठवां पद $2$ के बराबर है, तब गुणनफल ${a_1}{a_4}{a_5}$ को न्यूनतम बनाने वाला समान्तर श्रेणी का सार्वअन्तर है
माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$ $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.