अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=\frac{n}{n+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{n}=\frac{n}{n+1}$

Substituting $n=1,2,3,4,5,$ we obtain

${a_1} = \frac{1}{{1 + 1}} = \frac{1}{2},$

${a_2} = \frac{2}{{2 + 1}} = \frac{2}{3},$

${a_3} = \frac{3}{{3 + 1}} = \frac{3}{4},$

${a_4} = \frac{4}{{4 + 1}} = \frac{4}{5},$

${a_5} = \frac{5}{{5 + 1}} = \frac{5}{6}$

Therefore, the required terms are $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$ and $\frac{5}{6}$

Similar Questions

समान्तर श्रेणी के तीन क्रमागत पद इस प्रकार हैं कि उनका योग $18$ तथा उनके वर्गों का योग $158$ है तब इस श्रेणी का महत्तम पद होगा

दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है 

  • [JEE MAIN 2014]

समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है

  • [JEE MAIN 2020]

निम्न में से कौन सी श्रेणी समान्तर श्रेणी है

माना $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{ n }}(i=1,2, \ldots, n$ के लिए $x_{i} \neq 0$ है) समांतर श्रेढ़ी में ऐसे हैं कि $x_{1}=4$ तथा $x_{21}=20$ है। यदि $n$ का न्यूनतम धनपूर्णांक मान जिसके लिए $x_{ n } >50$ है, तो $\sum_{i=1}^{ n }\left(\frac{1}{x_{i}}\right)$ बराबर है

  • [JEE MAIN 2018]