अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=\frac{n}{n+1}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{n}=\frac{n}{n+1}$

Substituting $n=1,2,3,4,5,$ we obtain

${a_1} = \frac{1}{{1 + 1}} = \frac{1}{2},$

${a_2} = \frac{2}{{2 + 1}} = \frac{2}{3},$

${a_3} = \frac{3}{{3 + 1}} = \frac{3}{4},$

${a_4} = \frac{4}{{4 + 1}} = \frac{4}{5},$

${a_5} = \frac{5}{{5 + 1}} = \frac{5}{6}$

Therefore, the required terms are $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}$ and $\frac{5}{6}$

Similar Questions

माना $\mathrm{a}_1, \mathrm{a}_2, \ldots \ldots, \mathrm{a}_{\mathrm{n}}$  $A.P.$ में हैं। यदि $\mathrm{a}_5=2 \mathrm{a}_7$ तथा $\mathrm{a}_{11}=18$ है, तो $12\left(\frac{1}{\sqrt{a_{10}}+\sqrt{a_{11}}}+\frac{1}{\sqrt{a_{11}}+\sqrt{a_{12}}}+\ldots . \cdot \frac{1}{\sqrt{a_{17}}+\sqrt{a_{18}}}\right)$ बराबर है_________.

  • [JEE MAIN 2023]

माना $a_1=8, a_2, a_3, \ldots a_n$ एक $A.P.$ हैं। यदि इसके प्रथम चार पदों का योग $50$ है तथा इसके अन्तिम चार पदों का योग $170$ है, तब इसके मध्य दो पदों का गुणनफल _____________हैं।

  • [JEE MAIN 2023]

तीन समांतर श्रेणियों

$3,7,11,15, \ldots \ldots . . . ., 399$,

$2,5,8,11, \ldots \ldots \ldots \ldots . ., 359$ तथा

$2,7,12,17, \ldots \ldots . ., 197$,

के उभ्यनिष्ठ पदों का योग है ____________I

  • [JEE MAIN 2023]

दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको $4$ से विभजित करने पर शेषफल $1$ हो।

मान लें कि एक समांतर श्रेणी $(arithmetic\,progression)$ के पहले $m$ पदों का योग $n$ है एवं इसके पहले $n$ पदों का योग $m$ है। यहाँ $m \neq n$ है। तब इस श्रेणी के पहले $(m+n)$ पदों का योग होगा:

  • [KVPY 2018]