- Home
- Standard 11
- Mathematics
यदि $2 \cos \theta+\sin \theta=1\left(\theta \neq \frac{\pi}{2}\right)$ है, तो $7 \cos \theta+6 \sin \theta$ बराबर है
$\frac{1}{2}$
$\frac{46}{5}$
$\frac{11}{2}$
$2$
Solution
Given $2 \cos \theta+\sin \theta=1$
Squaring both sides, we get $(2 \cos \theta+\sin \theta)^{2}=1^{2}$
$\Rightarrow 4 \cos ^{2} \theta+\sin ^{2} \theta+4 \sin \theta \cos \theta=1$
$\Rightarrow 3 \cos ^{2} \theta+\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+4 \sin \theta \cos \theta$ $=1$
$\Rightarrow 3 \cos ^{2} \theta+1+4 \sin \theta \cos \theta=1$
$\Rightarrow 3 \cos ^{2} \theta+4 \sin \theta \cos \theta=0$
$\Rightarrow \cos \theta(3 \cos \theta+4 \sin \theta)=0$
$\Rightarrow 3 \cos \theta+4 \sin \theta=0$
$\Rightarrow 3 \cos \theta=-4 \sin \theta$
$\Rightarrow \frac{-3}{4}=\tan \theta=\sqrt{\sec ^{2} \theta-1}=\frac{-3}{4}$
$(\because \tan \theta=\sqrt{\sec ^{2} \theta-1})$
$\Rightarrow \sec ^{2} \theta-1=$ $\left(\frac{-3}{4}\right)^{2}=\frac{9}{16}$
$\Rightarrow \sec ^{2} \theta=\frac{9}{16}+1=$ $\frac{25}{16} \Rightarrow \sec \theta=\frac{5}{4}$
or ${\cos \theta=\frac{4}{5}}$ ……. $(1)$
Now, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\Rightarrow \sin ^{2} \theta+\left(\frac{4}{5}\right)^{2}=1$
$\sin ^{2} \theta+\frac{4}{5}=1 \Rightarrow \sin ^{2} \theta=1-\frac{16}{25}=\frac{9}{25}$
$\sin \theta=\pm \frac{3}{5}$ …….. $(2)$
Taking $\quad\left(\sin \theta=-\frac{3}{5}\right) \quad$ because $\left(\sin \theta=\frac{3}{5}\right)$ cannot satisfy the given equation.
Therefore; $7 \cos \theta+6 \sin \theta$
$=7 \times \frac{4}{5}+6 \times \frac{3}{5}=\frac{28}{5}-\frac{18}{5}=2$