10-2. Parabola, Ellipse, Hyperbola
hard

જો $a$ અને $c$ એ વાસ્તવિક સંખ્યાઓ છે  અને ઉપવલય $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ ના વર્તુળ $x^2 + y^2 = 9a^2$ માં ચાર ભિન્ન બિંદુઓ સામાન્ય હોય તો .... 

A

$9ac -9a^2 - 2c^2 <0$

B

$6ac + 9a^2 - 2c^2 < 0$

C

$9ac -9a^2 -2c^2 > 0$

D

$6ac +9a^2 - 2c^2 >0$

(JEE MAIN-2013)

Solution

Radius $=3a$

Length of major axis $=4c$

Now, (radius)<(Half of the length of major axis)

$3a < 2c$

$9{a^2} < 4{c^2}$

$9ac – 9{a^2} > 9ac – 4{c^2}$

$9ac – 9{a^2} – 2{c^2} > 9ac – 6{c^2}\,\,\,\,\,\,\,\,……\left( i \right)$ 

Again $3a < 2c$

$ \Rightarrow 9ac < 6{c^2}$

$ \Rightarrow 9ac – 6{c^2} < 0\,\,\,\,\,\,\,\,\,\,…..\left( {ii} \right)$ 

From $(i)$ and $(ii)$,

$9ac – 9{a^2} – 2{c^2} > 0$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.