- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
જો $a$ અને $c$ એ વાસ્તવિક સંખ્યાઓ છે અને ઉપવલય $\frac{{{x^2}}}{{4{c^2}}} + \frac{{{y^2}}}{{{c^2}}} = 1$ ના વર્તુળ $x^2 + y^2 = 9a^2$ માં ચાર ભિન્ન બિંદુઓ સામાન્ય હોય તો ....
A
$9ac -9a^2 - 2c^2 <0$
B
$6ac + 9a^2 - 2c^2 < 0$
C
$9ac -9a^2 -2c^2 > 0$
D
$6ac +9a^2 - 2c^2 >0$
(JEE MAIN-2013)
Solution

Radius $=3a$
Length of major axis $=4c$
Now, (radius)<(Half of the length of major axis)
$3a < 2c$
$9{a^2} < 4{c^2}$
$9ac – 9{a^2} > 9ac – 4{c^2}$
$9ac – 9{a^2} – 2{c^2} > 9ac – 6{c^2}\,\,\,\,\,\,\,\,……\left( i \right)$
Again $3a < 2c$
$ \Rightarrow 9ac < 6{c^2}$
$ \Rightarrow 9ac – 6{c^2} < 0\,\,\,\,\,\,\,\,\,\,…..\left( {ii} \right)$
From $(i)$ and $(ii)$,
$9ac – 9{a^2} – 2{c^2} > 0$
Standard 11
Mathematics