Let a tangent to the Curve $9 x^2+16 y^2=144$ intersect the coordinate axes at the points $A$ and $B$. Then, the minimum length of the line segment $A B$ is $.........$

  • [JEE MAIN 2023]
  • A

    $5$

  • B

    $6$

  • C

    $7$

  • D

    $8$

Similar Questions

The length of the chord of the ellipse $\frac{x^2}{4}+\frac{y^2}{2}=1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is:

  • [JEE MAIN 2025]

If the maximum distance of normal to the ellipse $\frac{x^2}{4}+\frac{y^2}{b^2}=1, b < 2$, from the origin is $1$ , then the eccentricity of the ellipse is:

  • [JEE MAIN 2023]

If $\alpha x+\beta y=109$ is the equation of the chord of the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$, whose mid point is $\left(\frac{5}{2}, \frac{1}{2}\right)$, then $\alpha+\beta$ is equal to

  • [JEE MAIN 2025]

The distance between the directrices of the ellipse $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1$ is

If $P$ lies in the first quadrant on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ (where $a > b$ ), and tangent & normal drawn at $P$ meets major axis at the points $T$ & $N$ respectively, then the value of $\frac{{\left( {\left| {{F_2}N} \right| + \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| - \left| {{F_1}T} \right|} \right)}}{{\left( {\left| {{F_2}N} \right| - \left| {{F_1}N} \right|} \right)\left( {\left| {{F_2}T} \right| + \left| {{F_1}T} \right|} \right)}}$ is equal to (where $F_1$ & $F_2$ are the foci $(ae, 0)$ & $(-ae, 0)$ respectively)