Let a tangent to the Curve $9 x^2+16 y^2=144$ intersect the coordinate axes at the points $A$ and $B$. Then, the minimum length of the line segment $A B$ is $.........$

  • [JEE MAIN 2023]
  • A

    $5$

  • B

    $6$

  • C

    $7$

  • D

    $8$

Similar Questions

Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$, be a ellipse with major axis $A B$ and minor axis $C D$. Let $F_1$ and $F_2$ be its two foci, with $A, F_1, F_2, B$ in that order on the segment $A B$. Suppose $\angle F_1 C B=90^{\circ}$. The eccentricity of the ellipse is

  • [KVPY 2020]

Find the equation for the ellipse that satisfies the given conditions: Ends of major axis $(±3,\,0)$ ends of minor axis $(0,\,±2)$

Find the equation for the ellipse that satisfies the given conditions : Vertices $(\pm 5,\,0),$ foci $(\pm 4,\,0)$

Area of the quadrilaterals formed by drawing tangents at the ends of latus recta of $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

If $\theta $ and $\phi $ are eccentric angles of the ends of a pair of conjugate diameters of the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then $\theta - \phi $ is equal to