10-2. Parabola, Ellipse, Hyperbola
hard

Let a tangent to the Curve $9 x^2+16 y^2=144$ intersect the coordinate axes at the points $A$ and $B$. Then, the minimum length of the line segment $A B$ is $.........$

A

$5$

B

$6$

C

$7$

D

$8$

(JEE MAIN-2023)

Solution

Equation of tangent at point $P (4 \cos \theta, 3 \sin \theta)$ is $\frac{x \cos \theta}{4}+\frac{y \sin \theta}{3}=1$ So A is $(4 \sec \theta, 0)$ and point $B$ is $(0,3 \operatorname{cosec} \theta)$

Length $A B =\sqrt{16 \sec ^2 \theta+9 \operatorname{cosec}^2 \theta}$ $=\sqrt{25+16 \tan ^2 \theta+9 \cot ^2 \theta} \geq 7$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.