Write the first five terms of the following sequence and obtain the corresponding series :

$a_{1}=3, a_{n}=3 a_{n-1}+2$ for all $n\,>\,1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$a_{1}=3, a_{n}=3 a_{n-1}+2$ for $n\,>\,1$

$\Rightarrow a_{2}=3 a_{1}+2=3(3)+2=11$

$a_{3}=3 a_{2}+2=3(11)+2=35$

$a_{4}=3 a_{3}+2=3(35)+2=107$

$a_{5}=3 a_{4}+2=3(107)+2=323$

Hence, the first five terms of the sequence are $3,11,35,107$ and $323$

The corresponding series is $3+11+35+107+323+\ldots$

Similar Questions

If $a,b,c$ are in $A.P.$, then $\frac{1}{{\sqrt a + \sqrt b }},\,\frac{1}{{\sqrt a + \sqrt c }},$ $\frac{1}{{\sqrt b + \sqrt c }}$ are in

The solution of ${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ......... + {\log _{\sqrt[{16}]{3}}}x = 36$ is

Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.

  • [JEE MAIN 2022]

Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$  $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$  be in $A.P.$  such that  $x_1 = 4$ and $x_{21} = 20.$ If $n$  is the least positive integer for which $x_n > 50,$  then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $  is equal to.

  • [JEE MAIN 2018]

Let $a, b, c, d, e$ be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and $b+c+d$ is square of an integer. The least possible value of the number of digits of $c$ is

  • [KVPY 2013]