The set of values of $x$ for which the expression $\frac{{\tan 3x - \tan 2x}}{{1 + \tan 3x\tan 2x}} = 1$, is

  • A

    $\phi $

  • B

    $\frac{\pi }{4}$

  • C

    $\left\{ {n\pi + \frac{\pi }{4}:n = 1,\,2,\,3.....} \right\}$

  • D

    $\left\{ {2n\pi + \frac{\pi }{4}:n = 1,\,2,\,3.....} \right\}$

Similar Questions

If equation in variable $\theta, 3 tan(\theta -\alpha) = tan(\theta + \alpha)$, (where $\alpha$ is constant) has no real solution, then $\alpha$ can be (wherever $tan(\theta - \alpha)$ & $tan(\theta + \alpha)$ both are defined)

If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are

The number of roots of the equation $\cos ^7 \theta-\sin ^4 \theta=1$ that lie in the interval $[0,2 \pi]$ is

  • [KVPY 2010]

Let $\theta, 0 < \theta < \pi / 2$, be an angle such that the equation $x ^2+4 x \cos \theta+\cot \theta=0$ has equal roots for $x$. Then $\theta$ in radians is

  • [KVPY 2021]

Find the general solution of the equation $\cos 4 x=\cos 2 x$