જો $A = \left[ {\begin{array}{*{20}{c}}
1&{\sin \,\theta }&1\\
{ - \,\sin \,\theta }&1&{\sin \,\theta }\\
{ - 1}&{ - \,\sin \,\theta }&1
\end{array}} \right];$ તો દરેક $\theta \, \in \,\left( {\frac{{3\pi }}{4},\frac{{5\pi }}{4}} \right)$ માટે $det (A)$ ની કિમંત મેળવો.
$\left( {1,\left. {\frac{5}{2}} \right]} \right.$
$\left[ {\frac{5}{2},\left. 4 \right)} \right.$
$\left( {\left. {0,\frac{3}{2}} \right]} \right.$
$\left( {\frac{3}{2},\left. 3 \right]} \right.$
સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.
ધારો કે સમીકરણ સંહતિ $x+y+k z=2$ ; $2 x+3 y-z=1$ ; $3 x+4 y+2 z=k$ ને અસંખ્ય ઉકેલો છે. $( k +1) x +(2 k -1) y =7$ ; $(2 k +1) x +( k +5) y =10$ ને:
ધારો કે $S _1$ અને $S _2$ એવા દરેક $a \in R$ - \{0\}ના ગણો દર્શાવે છે જેના માટે સુરેખ સમીકરણ સંહતિ
$a x+2 a y-3 a z=1$
$(2 a+1) x+(2 a+3) y+(a+1) z=2$
$(3 a+5) x+(a+5) y+(a+2) z=3$
ને અનુક્રમે અનન્ય ઉકેલ તથા અસંખ્ય ઉકેલો હોય. તો
ધારો કે $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ અને $|2 A|^3=2^{21}$ છે જ્યાં $\alpha, \beta \in Z$,તો $\alpha $ ની એક કિંમત ______________ છે.
જો$ |A|$ એ શ્રેણિક $A$ કે જેની કક્ષા $ 3 $ હોય તેનો નિશ્રાયક દર્શાવે છે , તો$ |-2A|=$