If $5x + 9 = 0$ is the directrix of the hyperbola $16x^2 -9y^2 = 144,$ then its corresponding focus is
$(5, 0)$
$\left( {\frac{5}{3},0} \right)$
$(-5, 0)$
$\left( { - \frac{5}{3},0} \right)$
For hyperbola $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ which of the following remains constant with change in $'\alpha '$
If $\mathrm{e}_{1}$ and $\mathrm{e}_{2}$ are the eccentricities of the ellipse, $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ and the hyperbola, $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ respectively and $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ is a point on the ellipse, $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ then $\mathrm{k}$ is equal to
The normal to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{9}=1$ at the point $(8,3 \sqrt{3})$ on it passes through the point
Find the equation of the hyperbola satisfying the give conditions: Foci $(\pm 3 \sqrt{5},\,0),$ the latus rectum is of length $8$
Find the equation of the hyperbola satisfying the give conditions : Vertices $(\pm 7,\,0)$, $e=\frac{4}{3}$