4-1.Complex numbers
hard

ધારોકે $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$ છે. તો $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$

A

$1$

B

$2$

C

$3$

D

$0$

(JEE MAIN-2022)

Solution

$S=\left\{z \in C: z^{2}+\bar{z}=0\right\}$

Let $z = x + iy$

$z ^{2}= x ^{2}- y ^{2}+2 ixy$

$\bar{z}=x-i y$

$z^{2}+\bar{z}=x^{2}-y^{2}+x+i(2 x y-y)=0$

$x^{2}+x-y^{2}=0 \text { \& } 2 x y-y=0$

$y=0$ or $x=\frac{1}{2}$

If $y =0 ; x =0,-1$

If $x=\frac{1}{2} ; y=\frac{\sqrt{3}}{2}, \frac{-\sqrt{3}}{2}$

$\sum_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z)=\left(0-1+\frac{1}{2}+\frac{1}{2}\right)$

$+0+0+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2})$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.