જો $z=\frac{1}{2}-2 i$ એ એવી છે કે જેથી $|z+1|=\alpha z+\beta(1+i)$ થાય $i=\sqrt{-1}$ અને $\alpha, \beta \in \mathbb{R}$,તો $\alpha+\beta=$.....................
$-4$
$3$
$2$
$-1$
$z=\alpha+i \beta$ માટે જો $|z+2|=z+4(1+i)$ હોય, તો $\alpha+\beta$ અને $\alpha \beta$ એ $.........$ સમીકરણ ના બીજ છે.
જો ${z_1}$ અને ${z_2}$ એ બે સંકર સંખ્યા હોય ${z_1} \ne {z_2}$ અને $|{z_1}|\, = \,|{z_2}|$ છે. જો ${z_1}$ ને ધન વાસ્તવિક ભાગ છે અને ${z_2}$ ઋણ કાલ્પનિક ભાગ છે ,તો $\frac{{({z_1} + {z_2})}}{{({z_1} - {z_2})}}$ એ . . . થાય.
અસમતા $|z - 4|\, < \,|\,z - 2|$ એ . . . ભાગ દર્શાવે છે .
જો $z_1 , z_2$ અને $z_3, z_4$ એ $2$ અનુબધ્ધ સંકર સંખ્યાની જોડ હોય તો , $\arg \left( {\frac{{{z_1}}}{{{z_4}}}} \right) + \arg \left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ = .......
$0$ નો કોણાંક મેળવો.