- Home
- Standard 12
- Mathematics
જો $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1\end{array}\right], B=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3\end{array}\right],$ અને $C=\left[\begin{array}{ccc}4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3\end{array}\right],$ હોય, તો $(A+B)$ અને $(B-C)$ ની ગણતરી કરો. વળી, ચકાસો કે $A+(B-C)=(A+B)-C$
Solution
$A+B=$ $\left[ {\begin{array}{*{20}{c}}
1&2&{ – 3} \\
5&0&2 \\
1&{ – 1}&1
\end{array}} \right]$ $ + \left[ {\begin{array}{*{20}{c}}
3&{ – 1}&2 \\
4&2&5 \\
2&0&3
\end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}}
{1 + 3}&{2 – 1}&{ – 3 + 2} \\
{5 + 4}&{0 + 2}&{2 + 5} \\
{1 + 2}&{ – 1 + 0}&{1 + 3}
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
4&1&{ – 1} \\
9&2&7 \\
3&{ – 1}&4
\end{array}} \right]$
$B – C = $ $\left[ {\begin{array}{*{20}{c}}
3&{ – 1}&2 \\
4&2&5 \\
2&0&3
\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}
4&1&2 \\
0&3&2 \\
1&{ – 2}&3
\end{array}} \right]$
$A + (B – C) = $ $\left[ {\begin{array}{*{20}{r}}
1&2&{ – 3} \\
5&0&2 \\
1&{ – 1}&1
\end{array}} \right] + \left[ {\begin{array}{*{20}{r}}
{ – 1}&{ – 2}&0 \\
4&{ – 1}&3 \\
1&2&0
\end{array}} \right]$
$=$ $\left[ {\begin{array}{*{20}{c}}
{1 + ( – 1)}&{2 + ( – 2)}&{ – 3 + 0} \\
{5 + 4}&{0 + ( – 1)}&{2 + 3} \\
{1 + 1}&{ – 1 + 2}&{1 + 0}
\end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}}
0&0&{ – 3} \\
9&{ – 1}&5 \\
2&1&1
\end{array}} \right]$
$(A+B)-C=$ $\left[ {\begin{array}{*{20}{c}}
4&1&{ – 1} \\
9&2&7 \\
3&{ – 1}&4
\end{array}} \right] – \left[ {\begin{array}{*{20}{c}}
4&1&2 \\
0&3&2 \\
1&{ – 2}&3
\end{array}} \right]$
$=\left[\begin{array}{ccc}4-4 & 1-1 & -1-2 \\ 9-0 & 2-3 & 7-2 \\ 3-1 & -1-(-2) & 4-3\end{array}\right]$ $=\left[\begin{array}{ccc}0 & 0 & -3 \\ 9 & -1 & 5 \\ 2 & 1 & 1\end{array}\right]$
Hence, we have verified that $A+(B-C)=(A+B)-C$.