यदि $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13}$ है, जहाँ $x$ तथा $y$ दोनों द्वितीय चतुर्थांश में स्थित हों तो $\sin (x+y)$ का मान ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We know that

$\sin (x+y)=\sin x \cos y+\cos x \sin y$.......$(1)$

Now $\cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$

Therefore $\cos x=\pm \frac{4}{5}$

since $x$ lies in second quadrant, cos $x$ is negative.

Hence $\cos x=-\frac{4}{5}$

Now $\sin ^{2} y=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169}$

i.e. $\sin y=\pm \frac{5}{13}$

since $y$ lies in second quadrant, hence sin $y$ is positive. Therefore, $\sin y=\frac{5}{13} .$ Substituting the values of $\sin x, \sin y, \cos x$ and $\cos y$ in $(1),$ we get

$\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$

$\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}$

Similar Questions

समीकरण $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0$; $x \in[-2 \pi, 2 \pi]$ के हलों की संख्या है :

  • [JEE MAIN 2024]

यदि $(1 + \tan \theta )(1 + \tan \phi  ) = 2$, तब $\theta  + \phi  =$ ......$^o$

मान लीजिये कि $\alpha$ चर वास्तविक संख्या है जो $\pi / 2$ का पूर्णांकीय गुणित $(integral\,multiple)$ नहीं है। दिये गए तत्समक $(equality)$ $\frac{\sin (\lambda \alpha)}{\sin \alpha}-\frac{\cos (\lambda \alpha)}{\cos \alpha}=\lambda-1$ को संत्ष्ट करने वाली कितनी वास्तविक संख्याएँ $\lambda$ हैं?

  • [KVPY 2015]

माना $P =\{\theta: \sin \theta-\cos \theta=\sqrt{2} \cos \theta\}$ तथा $Q =\{\theta: \sin \theta+\cos \theta=\sqrt{2} \sin \theta\}$ दो समुच्चय हैं, तो

  • [JEE MAIN 2016]

$x \in(0, \pi)$ के लिये समीकरण $\sin x+2 \sin 2 x-\sin 3 x=3$ के

  • [IIT 2014]