The number of solution of the given equation $a\sin x + b\cos x = c$ , where $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ is

  • A

    $1$

  • B

    $2$

  • C

    Infinite

  • D

    None of these

Similar Questions

The value of $\theta $ in between ${0^o}$ and ${360^o}$ and satisfying the equation $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ is equal to

The sum of the solutions in $x \in (0,4\pi )$ of the equation $4\sin \frac{x}{3}\left( {\sin \left( {\frac{{\pi  + x}}{3}} \right)} \right)\sin \left( {\frac{{2\pi  + x}}{3}} \right) = 1$ is

No. of solution of equation $sin^{65}x\, -\, cos^{65}x =\, -1$ is, if $x \in (-\pi , \pi )$

Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-

If $\sin 5x + \sin 3x + \sin x = 0$, then the value of $x$ other than $0$ lying between $0 \le x \le \frac{\pi }{2}$ is