જો $x$ અને $y$ બંને બીજા ચરણમાં હોય અને $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ તો $\sin (x+y)$ નું મૂલ્ય શોધો.
We know that
$\sin (x+y)=\sin x \cos y+\cos x \sin y$.......$(1)$
Now $\cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$
Therefore $\cos x=\pm \frac{4}{5}$
since $x$ lies in second quadrant, cos $x$ is negative.
Hence $\cos x=-\frac{4}{5}$
Now $\sin ^{2} y=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169}$
i.e. $\sin y=\pm \frac{5}{13}$
since $y$ lies in second quadrant, hence sin $y$ is positive. Therefore, $\sin y=\frac{5}{13} .$ Substituting the values of $\sin x, \sin y, \cos x$ and $\cos y$ in $(1),$ we get
$\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$
$\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}$
જો $\tan (\cot x) = \cot (\tan x),$ તો $\sin 2x =$
સમીકરણ $3{\sin ^2}x + 10\cos x - 6 = 0$ નું સમાધાન કરવા માટે $x = . . .$
જો $\alpha ,\,\beta ,\,\gamma $ અને $\delta $ એ સમીકરણ $\tan \left( {\theta + \frac{\pi }{4}} \right) = 3\,\tan \,3\theta $ ના ઉકેલો હોય તો $tan\, \alpha + tan\, \beta + tan\, \gamma + tan\, \delta $ ની કિમત મેળવો.
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\cos 4 x=\cos 2 x$
સમીકરણ $3\tan (A - {15^o}) = \tan (A + {15^o})$ નો ઉકેલ મેળવો.