Trigonometrical Equations
hard

જો $x$ અને $y$ બંને બીજા ચરણમાં હોય અને $\sin x=\frac{3}{5}, \cos y=-\frac{12}{13},$ તો $\sin (x+y)$ નું મૂલ્ય શોધો.

A

$-\frac{56}{65}$

B

$-\frac{56}{65}$

C

$-\frac{56}{65}$

D

$-\frac{56}{65}$

Solution

We know that

$\sin (x+y)=\sin x \cos y+\cos x \sin y$…….$(1)$

Now $\cos ^{2} x=1-\sin ^{2} x=1-\frac{9}{25}=\frac{16}{25}$

Therefore $\cos x=\pm \frac{4}{5}$

since $x$ lies in second quadrant, cos $x$ is negative.

Hence $\cos x=-\frac{4}{5}$

Now $\sin ^{2} y=1-\cos ^{2} y=1-\frac{144}{169}=\frac{25}{169}$

i.e. $\sin y=\pm \frac{5}{13}$

since $y$ lies in second quadrant, hence sin $y$ is positive. Therefore, $\sin y=\frac{5}{13} .$ Substituting the values of $\sin x, \sin y, \cos x$ and $\cos y$ in $(1),$ we get

$\sin (x+y)=\frac{3}{5} \times\left(-\frac{12}{13}\right)+\left(-\frac{4}{5}\right) \times \frac{5}{13}$

$\frac{36}{65}-\frac{20}{65}=-\frac{56}{65}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.